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The problem proposed by Steklov [1] of finding all the cases when the equations of motion of a rigid body in an ideal fluid allow 
of a fourth integral in the form of a homogeneous polynomial of arbitrary degree is considered. When there is a certain symmetry, 
when other methods do not work [2-6], this problem is solved, including for a particular integral: all these cases are exhausted 
by the classical cases. An improvement of Husson's approach [7] is proposed, beginning from the second step. © 2000 Elsevier 
Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  AND F O R M U L A T I O N  OF T H E  R E S U L T  

The equations of inertial motion of a rigid body for irrotational flow around the body of an ideal 
homogeneous incompressible fluid, which is at a rest at infinity, have the form [8] 

M = M x t o +  p x v ,  / ~ = p x c o ,  c o = ~ T I ~ M ,  o = ~ T l ~ p  

2T = (aM, M) + 2(bM, p) + (cp, p) (1.1) 

Here M has the meaning of the total moment of the "body plus fluid" system, p is the overall momentum, 
differentiation with respect to time is carried out in a system of coordinates frozen in the body, a, b 
and c are constant 3 x 3 matrices, comprising the positive-definite matrix 

inverse to the matrix of the inertia coefficients when the added masses are taken into account, Tis the over- 
all kinetic energy, to is the angular velocity of the body and v is the velocity of the origin of coordinates [9]. 

Equations (1.1) have an invariant measure and three quadratic conservation laws, discovered by 
Kirchhoff: T, 04, p), p2. 

These equations also arise in other physical problems. For example, they describe the rotation around 
a fixed point of an electrically charged rigid body in a uniform magnetic field and an axisymmetic force 
filed with a quadratic potential, neglecting the effect of self-induction (in this case only the form 
(aM, 343) is positive-definite)[10, 11]. 

The function F(x) is said to be algebraic at the point x = 0, ifA0 + AtF + ... + Ak Fk = 0, where 
Ao(x) . . . . .  Ak(X) are functions that are analytic at the point x = 0, Ak(X) ~ O, k ~ N, see [12]. 

The integral of system (1.1) is said to be supplementary [1, 8], if it is independent of the classical 
integral and is said to be particular [13, 14] if it is only conserved when (M,p) = 0. It can be shown that 
the additional integral (general or particular) of system (1.1), algebraic at the point M = p = 0, can be 
reduced to a corresponding supplementary homogeneous rational integral [15, 2]. 

Steklov [1] and Lyapunov [16] obtained all the cases of the existence of a supplementary linear and 
quadratic integral of system (1.1)(later this was done in [17] for an arbitrary, not necessarily positive- 
definite, form T). 

Theorem. For values of the parameters 

a =  diag(al ,a l ,a3) ,  a I > 0 ,  a 3 > 0 ,  b =diag(b l ,b l ,b3) ,  c =d iag (c l , c2 , c3 )  

all cases of the existence of an additional algebraic general or particular integral of system (1.1) are 
exhausted by the classical integrals: Kirchhoff [8], Clebsch [18] and Chaplygin [13]. 
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Corollary. Chaplygin's integral of the fourth degree [13] is not continued to the algebraic integral 
outside the surface (M,p) = 0. 

This problem was investigated in [2] when al * a2 # a3 and for arbitrary b and c by making the 
replacementp ~ 8p and splitting the separatrice of Euler's case, where the Hamiltonian nature of the 
perturbed problem (1.1) is essentially employed, see [3, 4]. 

When al = a2 in the unperturbed case of a regular Euler-Lagrange precession there are no 
separatrices. The splitting of the other separatrices with another introduction of a small parameter is 
established either for small cl + c2 ~ 0 [5], or for fairly large aa/al [6]; the density of the secular set--  
for almost all a3/at > 2 [6] (with the exception of the classical integrable cases). 

Remark. In the most important case when the body has three mutually perpendicular planes of 
symmetry 

a = diag(aj,a2,a3),ai > 0, i = 1,2,3, b = 0, c = diag(q,c2,c 3) 

the theorem of this paper, together with the result obtained in [2], concludes the problem formulated 
by Steklov [1]. 

The proof of the theorem rests on Husson's method [7] of the expansion of the supplementary integral 
in a small parameter, uses the technique of the analysis of algebraic relations of Abel integrals, rising 
to the classical Abel and Chebyshev results [19] and which rest on the estimate of the algebraic 
multiplicity of zero defined in Section 1. 

When the unperturbed system has a complete set of algebraic integrals (Section 5), the obstacles to 
integrability in osculating algebraic variables are reduced directly to the residues and periods on the 
unperturbed solution in certain integro-differential operators of the vector field (el. [20, 14]). These 
operators contain an integration along the unperturbed solution and differentiation with respect to the 
osculating variables and the perturbation parameter. 

2. THE A L G E B R A I C  M U L T I P L I C I T Y  OF Z E R O  

Suppose x e Q. We will but 

W = s 2 - 1 ,  O = ( s - 1 ) / ( s + l ) ,  M = N o U ( - ~ - N 0 ) ,  N=(0,1,2...) 

Abel's lemma [21]. The integral f W~ds is an algebraic function of s, In ~ if and only if × ~ Z/2. In 
particular, it will be an algebraic function ofs  if and only if× ~ M. 

The proof of Abel's lemma follows from the well-known results in [21, 22]. 
Suppose a ring K is generated above C by the functions s, 1/x/W and a ring L is generated above K 

by the function in ~. For 

f =  ~. f/(ln0)/, f t ~ K + W I / 4 K ,  n ~ N  0 
I=0 

we put v®f: = mint ord~3~. 
The following two properties of ord~ are extended to v~. 

Property 1. 

vo~(f +g) ~ > min{voof, voog} 

When v~f ~ v®g we have an equality. 

Property 2. 

V** (fg) = v**f + v**g 

Lemma 1. Suppose g(s) is a function that is algebraic at the point s = o0. Then 
(a) if ord~g ¢ 0, then ord~g' = ord~g + l; 
(b) if ord~g = 0, then ord~g' > 1. 

Property 3. Suppose f e L. Then 
(a) v~ f  >i 1 + v~f; 
(b) if v~f  ~< 1, then v~f' = 1 + v~f . 
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Criterion 1. Suppose f e L, Vo4" I> 2 Then 

Criterion 2. Suppose 

v . ( l  /as) >-- o 

Jr,. =~(Wt]WO'ds) ds, l, m e Z  

Then the condition Jb,, ~ L is equivalent to min{l, m} ~< - 1  ~< l + m. 
The proofs of  properties 1, 2, and 3 of Lemma 1 and Criteria 1 and 2 are given in Section 6. 

3. H U S S O N  V A R I A B L E S  

We make the replacement 

(M, p) -0 (Yl, Y2, r, zl, z2, P3), t --+ it 

co = (p,  q, r), P = (P l ,  P2, P3) 

yt = p + iq, y2 = p - iq, zl = pj + ip2, z2 = p~ - ip2 

used by Husson for a symmetrical heavy rigid body (see [23]). We obtain 

3'1 = - ~ r Y l  + P3 (~3Zl + ~2 Z2 ) / 2 -- ~(1 - 00 ( r z  I + Yl P3 ) + 2~1 rz2 

)2 = °crY2 - P3 (~2zl + ~3z2) / 2 + ~(1 - a)(rz2 + Y2P3) - 2~1 rz~ 

~= ~2 (z21_ 2 ~ _ y~z2)_ l~_j__~a(Y2Z2 _ ylzl) 4(1-or) z2)+'2  (y2z| 

zl = Y l p 3 - r z l ,  z2 =rz2 -Y2P3, P.~ =(Y2Zl - Y l Z 2 ) / 2  

where 

1 - O~ = a I [ a 3 , 

f~2 = al ( q  - c2) ,  

2 ~ = 2 b 3 - b l - b  2, 2 ~ = b , - b  2 

~3 = a l ( q  +c2-2E3),  E3 = c 3 - ~ 2 / a  3 + ~ l a  I 

We will write the linear combinations of the initial integrals 

H = 2 a  I T + ( ~ - a j ( q + c  2) /2)p 2, H 1=2a  I(M,p)-213p 2, H 2 = p 2  

in the form 

(3.1) 

4. T H E  R E P L A C E M E N T  (Y2, z l ,  P3) --+ e (y l ,  z1, P3) 

Following Husson, when 13 = 0 we introduce a small parameter e into the system by means of this 
replacement. 

The system and the integrals take the form 

)1 = --(ZrYl "1- p3(g~3Zl + Z 2 ) / 2 -- ~(1 -- 0C)(rzl + e)'lP3) 
(4.1) 

~'2 = ~r3'2 - P3(f'Zl + ~ 3 Z 2 ) / 2  + ~ (  1 - O0(rz2 + £Y2P3) 

H = Y, Y2 +(i  - a ) r  2 +fJ2(z~ + z ~ ) I 4 - ~ J 3 P ~ / 2  

Hm = Y, z2 + 3'2zl + 2(1 - ~)rp3 - BI (Zal + Z~) - 2~Z~Z2 - 2(2 - a)~p 2 (3.2) 

H2 = ZlZ2 + p2 

When 132 # 0 (i.e. with the exception of the integrable Kirchhoff case), without loss of generality we 
can put 132 = 1, assuming that ei therp,  b ~ R orp ,  b ~ iR 3 (the latter is equivalent to replacingp, b 
and c by p / ~ 2 ,  bye22 and c132). 
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2 [ - . ,  1 (E2z 2-z2)+~el~(y2~,-y,z2) 
~= 4 ( 1 - a )  

zl =eYlP3-rzl , z2 =rz2-eY2P3, /~3=(Y2Zt-YlZ2)/2 

z ~ / 4 + ( 1 - a ) r  2 +Ey, y 2 + e2(z2 14-~3p  2/2)  = h (4.2) 

YlZ2 + Y2z~ + 2(I - a)rp3 - 213h 2 - 2E(I - a)l~p 2 = h l 

z, z2 + ~o~ = h~ 

H e r e  h, h 1 and h 2 are  the constants  of  the integrals.  
' W e  will a ssume tha t  system (1.1) and, consequent ly ,  also (4.1) when  e = 1, has a supp lemen ta ry  

h o m o g e n e o u s  ra t ional  integral  ~(Yl, Y2, r, zl, z2, P3) (possibly, only on the surface (M, p) = 0, i.e. when  
(H1 + 213H2) (Yl, Y2, r, zl, z2, P3) = 0. Then ,  ~(~Yl, Yz, r, ez 1, z2, ep3) is a h o m o g e n e o u s  ra t ional  integral  
o f  system (4.1) for  arbi t rary  e (on the surface ~- I (H1 + 213H2)(eyl, Y2, r, ez 1, z2, ~P3) = hi + 213h2 = 0) 

By vir tue of  re la t ions (4.2) we can write successively 

z2 = 2[w - Eyly 2 - e 2 (Z~ I 4 - [~3P~ 1 2)] ~ ,  Zl = (/72 - V-P32)z2 -I 
(4.3) 

Yl = -"(Y2Zl + 2(! - Ot)rp3 - h I - 2~h 2 - 2e(1 - O~)13p~)z2 I 

where  w = h - (1 - a ) r  2. Hence ,  in var iables  

( f t . - I ) /2.  u = (Y2 - ~Z2 )Z2 ~x, R = w ~ ' 3  

system (4.1) takes the form 

du £ ~ l , ,  z'-C~ +O~u2z~-' + 2~u_lE(h2_Ew'-r~R2)z~'-~]= 

= ~.fl(h,h],h,z,u , R,r)+F.2f2(h, hl,h2,u, R,r)+... 

wO-Ct)/2 dR =S+( i_oO2  rw-lp3 = go(h, ht,h2,u,r)+ ~gl(h, hl,h2,u,R,r)+... (4.4) 
dr p 

p = z2...~2 +~.~S+¢ 2 (Ih -~.p2)z22 ~,~ = 2(2-  ot)~ 2 -1~.~ 
4(I - Or) 4(I - O ~ )  

S= hzuz~ -~ +(1 -a)rp3 -h ,  / 2 - e p ~ [ ( 2  - a ) [~  + uz~- ' ]  

T h e  following propos i t ion  follows f rom relat ion (4.4) and recur ren t  fo rmulae  (4.3). 

Proposition 1. T h e  functions)] ,  gi (i = 0, 1, 2 . . . .  ) are polynomials  ofh~,  h2, u and R. 

Proof. The expansion of the numerators and denominators of the right-hand sides of system (4.4) and the right- 
hand sides of recurrence relations (4.3) in series in powers of e are polynomials in h~, h2, u, R, y2,P3,Yl, Zl. So also 
are the formulae y2(u, z2) and p3(h, R, r). In view of the arbitrariness of h 

z2lt~ ) = 2w = 2(h - ( I - (x)r  2) ~ 0 

But only z~ and w are not under the natural power. Induction with respect to i concludes the proof. 

In tegra t ing  system (4.4) with e = 0, we have 

~=2-aC,  f ~ = D + I + C J  
(4.5) 

l = l  (l_¢~)h,~w(a-3)/2dr, J = - I  ( I -~)h2Iwa-2dr  

where C and D are integration constants. We will assume that C and D are chosen as integration constants 
o f  system (4.4) for  arbi t rary  s. 
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In all cases below we assume h ~ 0. 
1. The case et ~ Q, (hi, h2) ~ 0. It follows from the existence of four independent algebraic 

integrals of system (4.1) that there is an algebraic relation on y2(r), ,~3(r), r - - the components of 
the solution of system (4.1) when e = 0, whence the algebraic relation r, w ~, R for arbitrary C and D 
follows. From this relation, by virtue of the first Abel lemma ([23, 9.2]), we obtain ot ~ Q, i.e. a 
contradiction. 

2. The case ot E Q, then u(y2, z2), R(p3, r) are algebraic functions and the integral 

~ ( e y z , Y 2 , r , e . z l , z 2 , e p 3 )  = ~etFl(h,  hl,h2,u,R,r) 
I=l 0 

is an algebraic function of h, hi, h2, u, R, r, e. Suppose rn is the minimum such that the coefficient b m 
by El=me 1 ~, is functionally independent of h, h l and h2. Then the integral E~=10elF ¢ can be replaced ® l-m 

which is functionally independent of h, hi and h2 when e = 0. 

Definition. We will call the function 

F(h, hl ,h2,u,R,r,e)= F°(h, hl ,h2,u,R,r)+.. .  +e" Fn(h, hl,h2,u,R,r) 

the en-integral of system (4.4) if, by virtue of it dF/dr = o(e"). This integral will be said to be 
supplementary i f P  is not a function solely of h, hi and h2. 

When a E Q system (4.4) has a supplementary algebraic e°-integral u. 

Proposition 2. With the exception of the cases 

1) a ~ ~ - N 0, h I = 0; 2) et ~ -2N o, h 2 = 0; 3) h I = h 2 = 0 (4.6) 

the supplementary algebraic e°-integral is uniquely defined, apart from a functional relationship. 

Proof. In the case of two supplementary independent algebraic e°-integrals, all the solutions (4.5) must be algebraic 
curves in u, R, r space for arbitrary C and D. Consequently, I and J must be algebraic functions of r. Hence, using 
Abel's lemma, we have one of the following possibilities 

I ) a = l ;  2)hi=h2=0;  3)hi=0, ~ - 2 ~ M ;  

4)h2=0, (~t-3)/2~M; 5)ct-2,  (ct-3)/'2EM 

Assuming ~ > 1, we obtain the required result. 

In cases 3-9 considered below, this condition is satisfied uniquely. 
We will seek a general solution of system (4.4) in the form of series 

u(h, ht,h2, C,D,r,e) = ~ + eu" + e2u" + .... 

R(h,  h l ,h2 ,  C , D , r , E  ) = k + eR' + e2 R" +... 

equating coefficients of powers of e. Integrating the system obtained by equating the coefficients of e 1, 
we have 

r 

u" = S ×Rdr (4.7) 

~= Y.×i C' - ( ¢ t - I ) 2  -~ 4w-~ +2~lw-la+l)/2C+ aw-IC 2 
i=O 

d u "  = ~f l  ( h ,  h I - , Ofl - , - ~u 'h2'(t'R'r)u +'~-R (h'hl'h2"fi'~'R'r)R +f2(h'hl 'h2'u 'R'r)  
dr 

(4.8) 

Proposition 3. The functions u(hl, h2, C, D, r)R' ,  u", R", . . .  are polynomials of hi, h2, C and D. 
The proof follows from the triangularity of system (4.4), formulae (4.4) and proposition 1. 
The subcase of the uniqueness of the supplementary algebraic integral when e = 0. Substituting into 

the supplementary algebraic eLintegral 
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u + 8F ) (h, h i , h 2, u, R, r) 

the expansion of the general solution in e, we obtain the algebraic relation 

u' + F j (h, h t , h 2, t~,/~, r) = const(h, h}, h 2 , C, D) (4.9) 

Similarly, the presence of the eE-integral 

u + eF I (h, h I , h 2, u, R, r)+ 8 2 F 2 (h ,  h I , h 2 , u ,  R, r )  

is equivalent to the supplementary algebraic relationship 

" + ~ u t  (h, hl, " " " aF) "h h l ,h2 ,R ,r )R '  + F2(h, h l ,h2 ,u ,R , r )=cons t (h ,  hl,h2, C ,D)  (4.10) u h2,u ,R,r)u  + - ' ~  , 

Proposition 4. The '  following relation holds 

F l = ~.(u)R 2 + it(u, r)R + v(u, r) 

where h, ~, and v, are algebraic functions of u and r (for brevity, the dependence on h, hi and h2 is not 
shown here and below). 

Proof. T h e  functions/~(C, D, r) and u ' (C ,  D, r) are polynomials of no higher than the first degree 
in D. Differentiating the Husson identity (4.9) in the variables C, D and r with respect to D, we 
obtain 

aF ~ . - a2F t 
J x d r + - ~ ( u , R , r )  = const(C,D), --~--(fi,/~,r) = const(C,D) (4.11) 

It follows from the second identity of (4.11) that a2Fl(u, R,  r)/OR 2 is an algebraic e°-integral of system 
(4.4), which is functionally dependent on h, hi and h2, and by virtue of the proposition, on the subcase, 
which proves Proposition 4. 

Substituting the expression o f f  1 into the first identity of (4.11) we have 

2 
~, C i ~ × f i r  + 2~,(2 -a C)( ! + C J)  + ~t = const(C) (4.12) 

i=0 

3. The case Q ~ a ~t Z/2, (ha, hE) ¢ 0. This is the case of the uniqueness of the supplementary algebraic 
integral, and hence, by virtue of Proposition 4, we have formula (4.12). 

We substitute the Puiseux series of the functions h and ~ at the point C = oo into (4.12) 

I 0 ni l )  

2L(2-~C)= ~ ~,tC t, it(2-aC, r )=  ~ i t , , ( r ) C "  

where hi0 ~ 0 when l ~ 0. 
When k--- 0 or l0 ~< 0 or h2 = 0,10 ~< 1, considering the coefficient of C 2 in (4.12) we obtain that f×2dr 

is algebraic with respect to r, whence a = 0, a contradiction. 
When h0 I> 1, h 2 ~: 0 considering the coefficient of C 1°+1, we obtain that the expression 81olf×2dr + 

kzo/is algebraic with respect to r, where 8ij is the Kronecker delta, whence, by virtue of Abel's lemma, 
et - 2 ~ Z/2,  a contradiction. 

When h0 I> 2, h2 = 0, hi * 0, consideration of the coefficient of C t°. similarly leads to a contradiction. 
4. The case et ~ 1/2 - No, hi ~ O. By Abel's lemma, all terms on the left-hand side of identity (4.12), 

apart from the second and fourth, are taken in the algebraic functions and logarithms; but, individually, 
neither the second nor the fourth are taken. Consequently, either 13 = hi = 0 (which contradicts the 
condition of the case) or 2k = hlC. But the latter possibility is eliminated, since then the coefficient of 
C 2 in identity (4.12) would have the form 

2 -ct-I tx(o~ - I)~ w - l d r +  ~IJ + it2(r) = const 

where e t ,  0, while the second integral is an algebraic function of r. 
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Consequent ly ,  the Chaplygin case cannot  be extended to the case o f  general  integrability. 
5. The case ot • -2N0,  h213 ¢ 0. In this case all terms of  identi ty (4.12), apar t  f rom f×zdr, can be 

represen ted  in the form of  the sum of  monomia ls  In @, rrd, rw l+la, l • Z with constant  coefficients 
a~ = ~ s - 1)/(s + 1), s = - r  ~/(1 - oO/h, while the expansion of  this te rm contains 13 In cr, (r = ,f~ - l r  
+ w ~ , a contradict ion.  

6. The case et • - 1 - 2 N 0 ,  h1134 ¢: 0. We will use the fact tha t /~  • L,  while the coefficient o f C ° D  ° 
in u'  is equal  to 

2-~(0~ _ l ) ~ 4 f ~ l d r  

and contains In w. The  lat ter  follows f rom Cri ter ion 2 in view of  the fact that  - 1  is conta ined in 
the integer  interval {(a - 3)/2, - (or  + 3)/2}. We obtain a contradict ion with the first Husson  equality. 

7. The case when et • - N o  or a • - 1/2 - No, 13 = hi = 0. F rom the formulae  for  solutions (4.5) 
and (4.7) and the recur rence  relat ions (4.3) we obtain 

z2 = 2 w ~ ,  t7 C2 -a,  - - '  = Y2z2 - ~ ,  # = D + I + C J  

--vtz2 - 2(I - (x)rwC'-a)/2/? 

,T, • ,..2Z 2 / 2  = -.VlY2 2~(! -~)rw(1-a)/2J~, U" ~ (a - -1 )2 -a~J4~w-aRdr  

(4.13) 

where  the tilde denotes  that  in the expressions for  ri the terms ~ij e L with reduced  order  of  the 
pole  with respect  to r and r = oo are omitted:  these are such that  v=(-rq) - vo~(.ri) 1> 1 - or; for  
u '  the cor responding  expression is obta ined taking into account  Cri ter ion 2; for  f(h,  ht, hz, u, R, r, ~) 
here  and below we will deno te  by f,  f ' ,  f " , . . ,  the derivatives with respect  to e of  the general  
solution 

i 
1 a f ,  h i! ~ t ,h j ,h2 ,u(h ,h l ,h2 ,C,D,r ,e) ,  R(h, h t ,h2,C,D,r ,a) ,  r,a~e=0 

i = 0 ,  1,'~ 

where  the quantit ies z~, z], y] are expressed f rom relat ions (4.3). 
Different ia t ing (4.4) with respect  to 8 when ~ = 0 and substituting expressions (4.13) into its right- 

hand side, we obtain 

d R " / d r  - ((x - 1)~w-(a÷l)/2/72[a - 2 - (I + a)(I - ~)2 r2w-I] (4.14) 

Consequently,  v=(dR'/dr) ~> 1 - ot and the terms neglected in (4.14) lie inL2  = { f  e L [ v ~ f ~  > 2} 
8. The case et e - 1 - 2 N 0 ,  134 = 0. It follows f rom Criteria 1 and 2 that  R, u ' e  L,  and consequently,  

an addit ional  algebraic ~Lintegral u + eFl(u,  R,  r) exists. 

Proposition 5. U n d e r  the condit ions o f  this case R '  belongs to L. 

Proof. From formula (4.14), according to Criterion 2, since - 1  ~ [(a - 3)/2, - 2  ~ j ]  ( j ,  0, 1), we obtain that 
terms in R' that are linear in D belong to L. It is obvious that the coefficients of D in R belong to L. For the 
coefficients of h~ integrating by parts, we have 

~w-J-~a+l)12(SwttX-3)t2dr)2 dr = JjSwta-3)12dr-Sw(a-3)12jjdr 

J i = Sw-J-(~+l)12(~ w(~t-3)12dr)dr 
(4.15) 

By Criterion 2 we have Jj e L; v~(dJ/dr) = 2j + (or + 1), with the exception of (/' = 1, ct = -1},  by property 3, 
v J j  = 2j = a and, by Criterion 1, since v®(w(~-3)t2J) i> 3, the last integral in (4.15) belongs toL.  When et = -1 ,  
by Lemma 1, v J1  = 0 and, in view of Criterion 1 

S w-2 jadr e L 

For the coefficients o fh lh  2 and h~ these estimates are satisfied even more.  

The subcase ~ ~ - 1, hth2 ~ O. In view of  Propositions 1 and 3, the coefficient of  C°D ° in u" is calculated 
by substituting u = 0 in the first equat ion of  system (4.4). It is equal  to 
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2-a-2 (I -~)h2~ w-l-41dr 

By Criterion 2 this integral contains lnw if and only if - 1  ~ [(or - 3)/2, - 1 - ( e t  + 3)/2]. Under  the 
conditions of this subcase - 1 belongs to this interval. We obtain a contradiction with the second Husson 
identity. 

9. The case a ~ - No. Substituting into the right-hand side of (4.8) the terms of maximum power in 
D (the result of this substitution is denoted below by a tilde) in the quantities indicated below 

8 = 2 - a C ,  /~ -D ,  u'~(o~-1)2-4£(~41o+2~Clj+lotc2121 

R" - (o~- I)D2~l(ot- 2)Ii - ( o t +  l ) ( t~-I)213}-ID2C(o~-!){(1 - ~ ) r w  -I +ix/2 } 

/ o = ~ w - 4 d ,  -, l,=~w-(a+l)12dr, 12=]w- 'dr  , 13=JrZw-tr~+-'i)12dr 

we obtain, in view of Propositions 1 and 3, the coefficient of D 2 in du"/dr in the two subcases below, 
using analytical calculations in MAPLE V release 3. 

Thesubcase a = -1 ,  134 = 0, 13 ¢ 0, (hi, h2) ~ 0. The coefficient ofD2C 2 indu"/dris equal to -1213rw -1. 
This contradicts the algebraic relation (4.10) since ~,/~, u', R '  ~ L, see case 8. 

The subcase ote  -No,  13 = 0, 134 ~ 0, h2 ~ 0. The inclusion u' E L follows from (4.7), and the inclusion 
R'  ~ L follows from (4.14). The coefficient of D2C in du"/dr, in view of the fact that 

J w-tXlzdr = 1ol 2 - ~ w -t Iodr 

is equal to 

3 w_ I iodr ) 2-a 0~(tz - !)2~4(~ rw-I-~dr + ~ 

where the first integral is algebraic when et ~ 0, while the second contains In w when et a -No.  When 
et ~ 0 this contradicts the second Husson equality (4.10) (here we distinguish the third Clebsch case 

= 0 ) .  
10. The case 13 = hi = O, ct E 112 - N  O In this case the non-uniqueness condition 3 in (4.6) is satisfied, 

and hence we have two functionally independent supplementary algebraic e°-integrals: u, v: = R - 2~uJ. 
In system (4.4) we will change to the variables u, v, r. It follows from the existence of a supplementary 
algebraic eLintegral F°(u,v) + eFl(u, v, r) that 

a u  (2-a C, D)u" + (2 -4 C, D)OS" + F t (2 -a C, D, r) = const (4.16) 

° aF") 
au ' ao ~ 0  

The subcase 133 g 0. Expansion (4.7) takes the form 

u" = 2_a~(_~3w_a +2C2w_l  )(D+CJ)d r (4.17) 
0 ~ - I  

1 where only the coefficient o f D  C O does not belong to L and contains In g, the coefficient o f D  ° belongs 
to K C L. From (4.4) we have 

I --=wd°)" -2C(~(oL-3)Cwa-I  + ( a - 1 ) r / ~ ) x  
o~-I dr 

x(~--~Cw 4-1 - ( t ~ -  I)r/~/- C w-I/~2 24 du" - - - J  R = D + C J  (4.18) 
tx - 1 dr ' 

where u' is given by (4.17). All the terms on the right-hand side of (4.18), with the exception of the last 
2 0 3 one, and the coefficients of DC and D C in the last term belong to L2. Hence 
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I dot}" 
ot - I dr = f~3w-'~ J( D + CJ) mod/-'2 (4.19) 

By Criterion 1 the primitive of the coefficient of D in this equation mod L is equal to 

~3A0~ rw-ldr  - In w 

and for C it is equal to 

I 1 
~3AoA,~w-11Zdr ~ ln~, t x = - - - n  

~ - 1  2 

where 

" • - -  2 " n ! h - "  
~wrL_2dr= r ~,Aiw,_n_l/2 Ao = i A, = - -  

i=0 2n + I '  (2n + l)]! 

The coefficients o f f r w - l d r  and f w - 1 / Z d r  on the left-hand side of identity (4.16) are equal to, respectively 

( a  - I)2 o OF _¢~ 
2 ~3Aoh2O--~--v(2 C,D) 

,c r ,  ~ D  aF° + oL-~ I. AoAnh2c ~F O ] 
-Ca-  I~.~[-~-~ d.  ,+ ov j 

(4.20) 

where/~ is the coefficient of fw-1/2dr in fw~-V2dr,  and the coefficients given by (4.20) should vanish. 
We will use the fact that the constants C and D are arbitrary. When hh2 ~ 0 we obtain 133 = 0. When 

hz = 0 and 133h ~ 0 we have OF°/au = 0 and Eq. (4.18) reduces to 

w 1 to" = _CD2 S ( I -  r 2 _ - -  . + dr = °~CD2S m o d K  (4.21) 
o~- I 2 2 

whence OF°/~u =- O, i.e. we obtain a contradiction with (4.16). 
The subcase 133 = 0. It follows from (4.17), (4.19) and (4.20) that u',  co' ~ L. 
We will prove successively that the following functions belong to the ring L or the set wV4L and we 

will estimate their v=: v=r = v=w v2 = v~,~, 2 = -1 ;  v=~ -- v=J = v=~ = v=R = 0 [24], 12~Z 1 = 1; using 
Properties 1 and 2 we have v=/~ 3 = v=Yl = at - 1; from (4.3) v=z~ = v=u' = O, v®y~ = at; in view of 
(4.19) and Criterion 1 we have v=v' I> 0; 2 since the coefficient of CD in v' is equal to (4.21), while in 
v' it is zero, we have 

• • • t /  v~o~'=v**R'=0, v**p3 =v**yj = •x - I ,  v**zl =20~-I ,  v**z2~-O 

From the second equation of (4.4) we obtain 

l dR" =h2w(tX_l)/2(uz~_3),,+(l_oQr[R(z22 _ / w-i)],, - 
4 ( a -  I) dr 4 (4.22) 

-w(I -~) /2(R2uz~-3) '+[  h2w(a-~)/2?d-a-j2 + (I - a)r/~]h~,26 

Since all terms on the fight-hand side of (4.22), apart from h2w(a-1)/2u"~2 -3, belong to L2, the quantity 

11 l /  dto . + 2~ j du dR" _ 2o dJ u" dR" . . . .  4 (G-  i )h2w(a-J)/2~-3 u ", 
dr dr dr dr dr 

belongs to L2. 
The subcase 133 = 0, h2 ~ O. It following from system (4.4) that 

I du" , '~L . ( I - o c ) / 2 7 - ~ - - c t - 3  { I  e c ) / 2  2 ct 3 , cn2w t~Z2 =40cw - (u R z 2 -  ) e l ~  
o t - I  dr 
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whence, in view of Criterion 1 

u" = -2-2-c~(tx - l)h2J w-l-cx (D + CJ)dr mod L 

tO,, = (or-  I)h~ ~ w_l_aj(D + CJ)dr rood L 
4 

From the existence of the supplementary algebraic e2-integral F°(u, v) + eFl(u, v, r) + e2F2(u, v, r) it 
would follow that 

(2-a C'D)u" + (2-a C'D)tO" ~Cir)[Inu ]' ~u ' 3v (4.23) 

where C(r) [In v] is a ring above the field C(r), generated by the element In v. 
But integration by parts and the use of  well-known formulae [24] show that 

- - = - 2  -ct-2 (oL- I )DBln tJ+C Al m o d L  

tO" / / Allnw a|anint~]  . 
~ =  D +C 
h2 - - t  2 ( t~-  1) ~ I moo L 

/ ° 
B = ( a -  I)-N2J- ' (2n - 3)!!h "-t I(n - 1)! 

It follows from (4.23) that 

CA~ I(cx - !) 

DA t/(2(tx - 1)) 

, n = 0  2 
, n ~ N '  At h(4n2 - I) 

°" I CA, A n I(0~- I) ~ -- 0 

whence, in view of the fact that C and D are arbitrary, it follows thatAv,l n = A1B = 0, i.e. Aa = 0 (here 
we distinguish the Chaplygin case et = 1/2, 131 = 13 = 133 = hi = 0 orAn = B = 0, which corresponds 
to an empty set of  the parameters of the problem. 

5. T H E  R E P L A C E M E N T  (Yl, Y2, P3) --~ 8(yl,  Y2, P3) 

In the remaining case 131 = 13 = 133 = Ha =/-/2 = 0, a ~ - N o  we introduce a small parameter B into 
system (3.1), (3.2) by making this replacement. We have 

dYl o~r)'l - P3z2 12 dy2. = -o~ry 2 + P3zj 12 
, (5 .1)  

dzl rzl - ~-Yl P3 dzl rzj - ey I P3 

Y tZ2+Y2Zl , ( t x - I ) r  2 = h + l  2 + z ~  ) 
P3 = 2(tx- I)r "~(Zl  "eYlY2, 

where h is the constant of the integral H. 
Since system (5.1) has two algebraic ~°-integrals 

u=y l z~  rt, u = y 2 z ~ w  -~ ,  w = 4 h + z  2 

we can change to osculating algebraic coordinates (h, u, v, zl) 

(5.2) 

I~ = £fl(h,u,v,Zl)+ E2 f2(h,u,v ,Zl)+. . .  

ti = egl(h,u,v, z l )+e2g2(h,u ,u ,z l )+. . .  

(5.3) 

fl -"d-~_l I v -  u 2zl_4a +2ot (~_ l )u2z{ l ]w-~  
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2 
UU 2 I _3 ~ . = [2ct w - 8ocw + 24oth + 7(w - 4h)]z,.., w - , . .  gl  
1 

Expressions for fa, gl, f2 and g2 were calculated in MAPLE V. 
Suppose ~(Ya, Y2, r, zl, z2, P3) is the supplementary algebraic interval of system (3.1) when 

H~ = H2 = O. 
Then 

,~(~f~yl,~f'~y2,r, zl.z~,,~-Ep3)= ~ et/SFt/'~(h,u.v,zj), Io~Z. s~N 
1=10 

is the algebraic integral (5.1) with arbitrary e. Suppose rn is a minimum number such that the quantity 
/~/s is functionally independent of h. Then the integral ~ 8t/sF t/s can be replaced by ~ e(t-m)/SF l/s. In 

l=l 0 l=m 
view of the fact that system (5.1) is rational with respect to e its component for integer powers of B will 

also be the integral (5.1). 
It follows from the existence of the supplementary algebraic e2-integral F°(u, v) + e.Fl(u, v, zl) +82F2(u, 

v, zl) of  system (5.1) that 

aF'  aF  0 ~u(U,v)gi (u ,u ,  zi), ( aF° , aF° I S 0  (5.4) az, = a,, ( , , .o)s;( , , . , , .z,)+ J 

a F  2 

az~ 

OF t 
+ 

au 

aF ° aF 0 
- (u.u)f~(u,v, zl)+~---(u,u)g2(u,u, Zl) + au O u  

(u,u,z,)f~(u,v,z,)+-~v (u,v, zl)g~(u,v,z~) (5.5) 

Here and below, for brevity, the dependence on h is not indicated. 
It follows from relations (5.3) and (5.4) that 

• ( aF' ") / aF0 aF0)-=0 _" - :  a,, ) 

whence, when o t ,  0 (here we distinguish the third Clebsch case a = 0), it follows that F ° = F°(uv), 
and, without loss of generality, we can put F ° = uv. Then, in view of (5.4) 

2[ C. / 1 Fl=lV ~, v2w ~ - ~ ( _ 4 h ) - 2 a - ' w t  _u2(6ct-7)w-)~ +qil(u,u) 

Suppose C(zl, w i/2) is the space of  rational functions ofza, w x/2, 8 = 2h 1/2 .jr. WI/2. Suppose N is a linear 
space above C, generated by C(zl, wV2), In Zl, In 8. 

1 In view of the fact that the primitives f f ldz l  andgldZl belong to N, the term ~ makes no contribution 
to -F2mod  N. To calculate -~F2modN it is sufficient [24] to substitute into relations (5.5) terms of  small 
powers of w 

a(F j - ~J) = 2(6oc- 7).u u 2 w-~(I  + O(w)) 
au ~t-  I 

a (F  1 _ ~l ) _ 2v w -~  
- -  [(6a - 7)u 2 - 2 v  2 (4h) -2a w + O(w2)] 

av co-I 
(the remaining terms make no contribution to the residues at the point w = 0). Taking into account 
the fact that 

vf 2 + ug~ = ( ~  uu 3 zj w -2 [6(3a 2 - 7a  + 4)u 2 + ((5tx - 6)w + 2h)u 2 ] 
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we obta in  f rom rela t ions  (5.5) that  - F  2 m o d N  is a po lynomia l  in u and v and its coefficient of  uv 5 is 
equal  to 4h -2d (d - 1)-21n w, which contradicts  the fact that  F 2 is algebraic.  

Remark .  W h e n  there  is a comple te  set  o f  algebraic  e °- integrals,  ins tead of  obstacles to integrabili ty 
of  the Husson  form (4.16); (4.10), (4 .23); . . .  in this p rob lem we use the equivalent obstacles---the residues 
and per iods  of  the  r ight -hand sides o f  (5.4), (5.5) . . . .  mult ipl ied by dzl, on the R i e m a n n  surface (zl, 
Yl(zl), Y2(Zl)), def ined by re la t ions  (5.2) (on which they are rat ional) .  In  part icular ,  a smal ler  n u m b e r  
of  quadra tu res  is requi red  to calculate  these  obstacles.  

6 .  

Proof o f  Property 1. Suppose 

Then 

P R O O F  O F  T H E  A S S E R T I O N S  O F  S E C T I O N  2 

nl 
g = ~ gl Into  

1=0 

v**(f +g) = min t ordo.(~ + g t ) ~  minl{ord** ft,ord** gt)} = min(v**f,v**g} 

Proof o f  Property 2. Obviously 

o rd .  (J~g,,) = ord** .h + ord~ g,,, >>- v ~ f  + v**g, 0 <~ I <<- n. 0 ~ in <~ n I 

Suppose l0 and m0 are minimum numbers such that 

ord~o JI0 = v**f, 

Then 

ord** gmo = v . g  

1( :o l/ , ord** ~ In / 0 ~ gm Into O = ord** ~ = ord.~(j~ogmc I ) = v**f + v**g 
I I /1/¢1 +nil } =-- 

Proof o f  L e m m a  1. Using a Puiseux expansion 

we have 

whence 

g ' ( s )=s-k (ao+als - I I t+ . . . ) ,  ao~O, t e N ,  k ¢ Q I I  

g ( s ) = C + s l - ~ [ a o l ( l - k ) - a l s - l / t l ( l - k - l l t ) + . . . ] ,  C = const 

ordo. g = min { ordoo C, ord .  g " - I } , ord .  0-- +oo 

Consequently, when ord~ g < 0 we obtain assertion a, when ord~ g < 0 we have ord~ g' > 1 and C ~ 0 b, and 
when ordoo g' > 0 we have C ~ 0 a. 

Proof o f  Property 3a. Actually 

v~ f '=min tord .o ( f {  + 2(l + l)W-l fl+l ) >-minl{ord** fl',Ord**(W-I fl+])}>-"l + 

+mintordo, 3~ = I + v . f  

where the first equality follows from the definition ofv~, the first inequality follows fi'om Property 1, and the second 
follows from Lemma 1. 

Proof o f  Property 3b. Suppose the number l is such that v4 ¢ = ord~)~ Then 

v ~ f ' ~  < ord~(ff+ 2(I + I)W-Ij~+I ) = ord~ .if= I + ord** f l  = I + v ~ f  
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where the inequality follows from the definition of v~, the second equality follows from Lemma 1, since possibility 
b in it is eliminated, and the first equality follows from the second and from the relation 

ord~ (J/+l W-I ) = 2 + ord,. 3~+1 ~ l +ord** j~ 

Proof o f  Criterion 1. Suppose that either o r j  = 0, k = - 1 ,  - 3 / 2 ,  - 2  . . . . .  o r j  = 1, k = - 3 / 2 ,  - 2 ,  - 3 / 2  . . . . .  We 
put  

Ij ,  t = SsJW *In/Ods. 1=0,1,2 .... 

Then/)k0 - ~0yB, In @ E K for a certain constant Bk and hence/jk0 ~ L. By making the replacement s = 1/z we 
can establish that/jkt is an analytic function at the point s = oo. Consequently, V=/jkO I> 0. 

Integrating by parts 

ij,t = ljko In/O - 2l~ W -I Ij ,  o In/-I Ods (6.1) 

we use induction with respect to l, and inside it induction with respect to k. We consider four cases of the evenness 
of the quant i t ies j  and 2k. For example, i f j  = 0 and k is an integer, we have 

- I  
I o k o = B k l n O + s  Y. AmW".  Am=const  

In=k+l 

Substituting this expression into (6.1) we obtain 

- I  
(I + 21B_l)lo_lt = Io_lOlnl ~ - 2 1  Y. A,,,ll.m_l.l_ I 

m=k4-1 

where the second term belongs to L0 = {f ~ L Iv~f'~0} by the assumption of the induction. 
Proof o f  Criterion 2. If / ,  m < 0, we have J ~  ~ L in view Criterion 1. I f / <  0 ~< m, we have 

m+l 
Jim = - ~, Ai~ WidWE L ¢:~ 1<~ - I <~m + 1 

i=l 

The case rn < 0 ~< l reduces to the previous integration by parts. 

I wish to t h a n k  V. V. Kozlov  for  suggest ing the  p r o b l e m  and  for useful  advice, and  Yu. A. Arkhange l ' sk i i  
a n d  D. V. T re shchev  for  the i r  c o m m e n t s .  
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